Các dạng bài tập Phương trình lượng giác chọn lọc, có lời giải
Với Các dạng bài tập Phương trình lượng giác chọn lọc, có lời giải Toán lớp 11 tổng hợp các dạng bài tập, 100 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Phương trình lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.
Bạn đang xem: Bài tập phương trình lượng giác cơ bản có đáp án

Cách giải phương trình lượng giác cơ bản
A. Phương pháp giải & Ví dụ
- Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.
Các trường hợp đặc biệt:

- Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.
Khi đó phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
và x = -arccosa + k2π, k ∈ Z.
Các trường hợp đặc biệt:

- Phương trình tanx = a (3)
Điều kiện:

Khi đó các nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
- Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z
Ví dụ minh họa
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sin(π/6) c) tanx – 1 = 0
b) 2cosx = 1. d) cotx = tan2x.
Hướng dẫn:
a) sinx = sinπ/6

b)

c) tanx=1⇔cosx= π/4+kπ (k ∈ Z)
d) cotx=tan2x

Bài 2: Giải các phương trình lượng giác sau:
a) cos2 x - sin2x =0.
b) 2sin(2x – 40º) = √3
Hướng dẫn:
a) cos2x-sin2x=0 ⇔cos2x-2 sinx cosx=0
⇔ cosx (cosx - 2 sinx )=0

b) 2 sin(2x-40º )=√3
⇔ sin(2x-40º )=√3/2

Bài 3: Giải các phương trình lượng giác sau:

Hướng dẫn:
a) sin(2x+1)=cos(3x+2)

b)

⇔ sinx+1=1+4k
⇔ sinx=4k (k ∈ Z)
Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm
Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:
⇔sinx = 0 ⇔ x = mπ (m ∈ Z)
Cách giải Phương trình bậc hai với một hàm số lượng giác
A. Phương pháp giải & Ví dụ
Định nghĩa:
Phương trình bậc hai đối với một hàm số lượng giác Là phương trình có dạng :
a.f2(x) + b.f(x) + c = 0
với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).
Xem thêm: Mẫu Shipping Mark - Chuẩn Là Như Thế Nào
Cách giải:
Đặt t = f(x) ta có phương trình : at2 + bt +c = 0
Giải phương trình này ta tìm được t, từ đó tìm được x
Khi đặt t = sinu(x) hoặc t = cosu(x), ta có điều kiện: -1 ≤ t ≤ 1
Ví dụ minh họa
Bài 1: sin2x +2sinx - 3 = 0

Bài 2: cos2x – sinx + 2 = 0

B. Bài tập vận dụng
Bài 1: 1/(sin2 x)+tanx-1=0
Lời giải:


Bài 2: cosx – sin2x = 0
Lời giải:

Bài 3: cos2x + cosx – 2 = 0
Lời giải:

Cách giải Phương trình bậc nhất theo sinx và cosx
A. Phương pháp giải & Ví dụ
Xét phương trình asinx + bcosx = c (1) với a, b là các số thực khác 0.