Trong chương trình toán trung học cơ sở, phương trình vô nghiệm là một trong những dạng toán tương đối khó với nhiều học sinh. Qua bài viết này, GiaiNgo sẽ giúp các bạn nắm vững kiến thức phương trình vô nghiệm khi nào, các dạng bài tập của phương trình vô nghiệm. Hãy đón đọc nhé!
Phương trình vô nghiệm khi nào? Một trong những bài toán các bạn học sinh vẫn thường gặp là “tìm m để phương trình vô nghiệm”. Bài viết này của GiaiNgo sẽ tổng hợp kiến thức về phương trình vô nghiệm, đưa ra những dạng toán thường gặp về phương trình vô nghiệm và cách giải chi tiết nhất. Hy vọng giúp các bạn học sinh rèn luyện thêm kiến thức để chuẩn bị cho các kì thi thật tốt. Cùng khám phá ngay thôi nào!
Phương trình vô nghiệm là gì?
Phương trình vô nghiệm là phương trình không có nghiệm nào. Phương trình vô nghiệm có tập nghiệm là S = Ø
Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc vô số nghiệm.
Bạn đang xem: Bất phương trình vô nghiệm khi nào
Phương trình vô nghiệm khi nào? Điều kiện để phương trình vô nghiệm
Phương trình vô nghiệm khi nào?
Bất phương trình vô nghiệm a=0 và b xét với dấu > thì b ≤0≤0; với dấu


Nếu ∆ Công thức nghiệm thu gọn tính ∆’ (chỉ tính ∆’ khi hệ số b chẵn).

Với b = 2b’
Nếu ∆’ vô nghiệm
Hướng dẫn:
Do hệ số ở biến x2 là một số khác 0 nên phương trình là phương trình bậc hai một ẩn.
Ta sẽ áp dụng điều kiện để phương trình bậc hai một ẩn vô nghiệm vào giải bài toán.

Bài 2: Tìm m để phương trình
Hướng dẫn:
Do hệ số ở biến x2 có chứa tham số m, nên khi giải bài toán ta phải chia hai trường hợp là m = 0 và m ≠0.

Bài 3: Tìm m để phương trình
Hướng dẫn:
Do hệ số ở biến x2 là một số khác 0 nên phương trình là phương trình bậc hai một ẩn. Ta sẽ áp dụng điều kiện để phương trình bậc hai một ẩn vô nghiệm vào giải bài toán.
Xem thêm: Doanh Nghiệp Và Công Ty - Công Ty Có Phải Là Doanh Nghiệp Hay Không

Bài 4: Tìm m để phương trình
Hướng dẫn:
Do hệ số ở biến x2 có chứa tham số m, nên khi giải bài toán ta phải chia hai trường hợp là m = 0 và m ≠0.

Như vậy bài viết trên đã giải đáp được thắc mắc Phương trình vô nghiệm khi nào? Đồng thời với những bài tập mẫu mà GiaiNgo chia sẻ, hy vọng sẽ giúp các bạn nắm vững kiến thức và rèn luyện tốt hơn. Chúc các bạn học tập tốt!