Lớp 1

Lớp 2

Lớp 2 - Kết nối tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 6

Lớp 6 - Kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp Tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Lý thuyết, các dạng bài tập Toán 8Toán 8 Tập 1I. Lý thuyết & trắc nghiệm theo bàiII. Các dạng bài tậpI. Lý thuyết & trắc nghiệm theo bàiII. Các dạng bài tậpToán 8 Tập 1I. Lý thuyết & trắc nghiệm theo bài họcII. Các dạng bài tập
Cách chứng minh đẳng thức lớp 8 cực hay, có lời giải chi tiết
Trang trước
Trang sau

Cách chứng minh đẳng thức lớp 8 cực hay, có lời giải chi tiết

A. Phương pháp giải

Áp dụng phép nhân đơn thức với đơn thức, nhân đa thức với đơn thức và nhân đa thức với đa thức với đa thức. Chúng ta biến đổi:

+ Cách 1: Vế trái và chứng minh bằng vế phải

+ Cách 2: Vế phải và chứng minh bằng vế trái

+ Cách 3: Vế trái và vế phải cùng bằng một biểu thức.

Bạn đang xem: Chứng minh các đẳng thức sau lớp 8

B. Ví dụ minh họa

Ví dụ 1. Chứng minh: (x2 - xy - y).(x + y) + xy(y + 1) = x3 - y2

Lời giải

Ta có: VT = (x2 - xy - y).(x + y) + xy(y + 1)

= x3 + x2y - x2y - xy2 - xy - y2 + xy2 + xy

= x3 - y2 = VP

Ví dụ 2. Chứng minh 2x + y + y2 = (1 - xy + y).(2x + y) + xy(2x + y - 2)

Chứng minh.

Ta có VP = (1 - xy + y).(2x + y) + xy(2x + y -2)

= 2x + y - 2x2y - xy2 + 2xy + y2 + 2x2y + xy2 - 2xy

= 2x + y + y2 = VT

Ví dụ 3. Chứng minh: (x2y + xy2).(x - y) = xy(x - y).(x + y)

Chứng minh

+ Ta có:

VT = (x2y + xy2).(x - y)

= x3y - x2y2 + x2y2 - xy3 = x3y - xy3 (1)

VP = xy(x - y).(x + y)

= xy.(x2 - y2) = x3y - xy3 (2)

Từ (1) và (2) suy ra VT= = VP.

C. Bài tập trắc nghiệm

Câu 1. Chứng minh rằng: y.(x + y) + (x - y).(x + y) = x(x + y)

Hiển thị đáp án

Chứng minh

Ta có: VT = y.( x+ y) + (x – y).(x+ y)

= xy + y2 + x2 + xy - xy - y2

= xy + x2

= x(y + x)

= VP


Câu 2.

Xem thêm: Những Hình Vẽ Bút Chì Đẹp - Những Bức Tranh Ảnh Vẽ Chì Đẹp Nhất

Chứng minh rằng: x(x + 1 - 2y) + y(1 - 2y) = (xy + x + y).(x - 2y + 1) - xy(x - 2y)

Hiển thị đáp án

Chứng minh

Ta có:

VP = (xy + x + y).(x - 2y + 1) - xy(x - 2y)

= x2y - 2xy2 + xy + x2 - 2xy + x + xy - 2y2 + y - x2y + 2xy2

= (x2y - x2y) + (- 2xy2 + 2xy2) + (xy - 2xy + xy) + x2 + x + y - 2y2

= -2xy + x2 + x + y - 2y2 (1)

VT = x(x + 1 - 2y) + y(1 - 2y)

= x2 + x - 2xy + y - 2y2 (2)

Từ (1) và (2) suy ra: VT = VP.


Chứng minh

VT = (xy + x - 1)(x - y) - xy(x - y + 1)

= x2y - xy2 + x2 - xy - x + y - x2y + xy2 - xy

= (x2y - x2y) + (xy2 - xy2) + (-xy - xy) - x + y

= -2xy - x + y

= VP


Chứng minh

Ta có:

VP = x(x + xy - 1) += (x - 2y).(x - 1) - 2x(x - 1)

= x2 + x2y - x + x2 - x - 2xy + 2y - 2x2 + 2x

= x2y - 2xy + 2y

= y(x2 - 2x + 2)

= VT


Chứng minh

Ta có:

VT = (x + y - xy).(x - 1) - x(x + 2y - 2)

= x2 - x + xy - y - x2y + xy - x - x2 - 2xy + 2x

= (x2 - x2) + (2x - x - x) + (xy + xy - 2xy) - x2y - y

= -x2y - y

= -y(x2 + 2)

= VP


Chứng minh

VP = (-xy + x2 + y2)(x + 1) - x2(x - y)

= -x2y - xy + x3 + x2 + xy2 + y2 - x3 + x2y

= (-x2y + x2y) + (x3 - x3) + x2 + y2 + xy2 - xy

= x2 + y2 + xy2 - xy(1)

VT = x(x + y2) - y(x - y)

= x2 + xy2 - xy + y2(2)

Từ (1) và (2) suy ra: x(x + y2) - y(x - y) = (-xy + x2 + y2)(x + 1) - x2(x + y)


Chứng minh

VT = (xy + x + 1).(y - 2) + xy + 2

= xy2 - 2xy + xy - 2x + y - 2 + xy + 2

= xy2 + (xy + xy - 2xy) - 2x + y + (2 - 2)

= xy2 - 2x + y

= (xy2 + y) - 2x

= y(xy + 1) - 2x

VP


Giới thiệu kênh Youtube fundacionfernandovillalon.com


CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, fundacionfernandovillalon.com HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 8 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!