Khi tiến hành tìm hiểu về các hàm lượng giác trong toán học chắc chắn bạn sẽ nghe nói đến cosin – một hàm số vô cùng quen thuộc và đồng hành cùng bạn trong các bài toán. Tuy nhiên có một số bạn học sinh vẫn chưa nắm rõ về định lý hàm số cos và các ứng dụng phổ biến của nó đối với toán học. Bài viết sau đây fundacionfernandovillalon.com Education – Câu lạc bộ toán học muôn màu sẽ cùng bạn giải đáp các thắc mắc và hàm số này để giúp bạn học tập tốt hơn nhé.

Bạn đang xem: Công thức hàm số cos

Sự ra đời của định lý hàm số cos

Định lý hàm số cos nghe có vẻ quen thuộc nhưng không phải ai cũng biết nó đến từ đâu được ra đời như thế nào. Sau đây hãy cùng fundacionfernandovillalon.com tìm hiểu nguồn gốc ra đời của hàm cosin nhé.

Về nhà toán học Al Kashi

Định lý cosin là một phần mở rộng của định lý Pitago. Nếu định lý Pitago cho chúng ta một công cụ hữu hiệu để tìm cạnh khuyết trong tam giác vuông thì định lý hàm số cosin cung cấp một phương pháp giúp tìm một cạnh của tam giác thông thường. Trong đó:

Các góc của tam giác khi biết cạnh của tam giácXác định cạnh thứ ba của tam giác nếu biết hai cạnh và góc đối diện của một trong hai cạnh này.

Định lý của Euclide

Vào thế kỷ thứ III trước Công nguyên, có một định lý được phát biểu dưới dạng hình học bởi nhà toán học Euclide. Được coi là tương đương với định lý hàm số cosin.

Định lý Euclide được phát biểu như sau:

“Trong một tam giác tù, bình phương của cạnh đối diện góc tù lớn hơn so với tổng bình phương của của hai cạnh kề góc tù là hai lần diện tích của hình chữ nhật bao gồm một cạnh bằng một trong hai cạnh kề góc tù của tam giác (cụ thể là cạnh có đường cao hạ xuống nó) và đoạn thẳng đã được cắt giảm từ đường thắng kéo dài của cạnh đó về phía góc tù bởi đường cao trên.”

Định lý hàm cosin trong tam giác

Hiểu và vận dụng định lý cosin thành thạo là điều kiện tiên quyết để các bạn học sinh đi sâu vào môn toán học. Để nắm rõ được điều đó thì chúng ta hãy cùng đi tìm hiểu bản chất của định lý này nhé.

Phát biểu định lý cosin

Trong tam giác, ta phát biểu định lý cosin sau đây:

“Trong một tam giác phẳng, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại trừ đi hai lần tích của chúng với cosin của góc xen giữa hai cạnh đó.”

Công thức định lý hàm số cosin

Ta xét tam giác ABC có độ dài như sau: BC = a, AC = b, AB = c, các góc tương ứng: góc A = , góc B = , góc C = , ta có:

*

Nhận xét: Trong một tam giác phẳng, nếu biết hai cạnh và góc xen giữa ta sẽ tính được độ dài cạnh còn lại hoặc tính góc khi biết 3 cạnh của tam giác.

Trường hợp tổng quát của định lý hàm số cosin là định lý Pitago.

Với công thức trên, nếu tam giác ABC vuông thì ta có:

Tam giác ABC vuông tại A, cosa (A) = 0 → a2 = b2 + c2

Tam giác ABC vuông tại B, cosb (B) = 0 → b2 = a2 + c2

Tam giác ABC vuông tại C, cosy (C) = 0 → c2 = a2 + b2

Chứng minh định lý hàm số cos

Có nhiều cách để chứng minh định lý có thể kể đến nhứ:

Sử dụng công thức tính khoảng cáchSử dụng công thức lượng giácSử dụng định lý PytagoSử dụng định lý Ptolemy

Ở đây, để dễ dàng nhất ta nên sử dụng định lý Pytago, cách làm sẽ như sau:

Xét tam giác ABC là tam giác nhọn, có BC = a, AC = b, AB = c, kė AH vuông góc với BC tại H, AH = h, HC = d.

*

Xét tam giác vuông ABH, ta có:

h2 = c2-(a-d)2=c2–a2+2ad-d2 (1)

Xét tam giác vuông ACH, áp dụng Pytago ta có:

h2=b2–d2(2)

Từ (1) và (2) ta được:

c2–a2+2ad-d2=b2–d2(3)

c2=a2+b2-2ad

Với d = bcosC:

c2=a2+b2-2abcosC

Với d = bcosC thế vào (3) ta được điều phải chứng minh!

Hệ quả của định lý cos

CosA = b2 + c2 – a22bc

CosB = c2 + a2 – b22ca

CosC = a2 + b2 – c22ab

Hệ quả này có một ý nghĩa quan trọng: “Trong một tam giác, ta luôn tính được các góc nếu biết 3 cạnh.”

Vậy nếu định lý cosin cho phép tính các cạnh thì hệ quả của nó cho phép tính góc trong tam giác. Có thể áp dụng chúng vào một bài toán khá quen thuộc: “Lập công thức đường trung bình trong tam giác”.

Cách vận dụng định lý cosin trong tam giác

Bài 1: Đường dây cao thế thẳng từ A đến B có độ dài 10km, từ A đến C có độ dài 8km, góc tạo bởi hai đường dây trên khoảng 75 độ. Tỉnh khoảng cách từ B đến C?

Lời giải:

Theo định lý cos ta có:

a2=b2+c2-a.b.c.cosA= 82 + 102 -2.8.10.cos75 122 km

Khoảng cách giữa B và C là 11 km

Bài 2: Cho tam giác ABC có góc A = 120 độ, cạnh b = 8cm và c = 5cm. Tính cạnh a và góc B, C?

Lời giải:

Theo định lý cosin ta có:

a2=b2+c2-2.b.c.cosA= 82 + 52 -2.8.5.cos120→ a = 11,4km

CosB = c+a-b22.a.c → góc B = 37 độGóc: A + B + C = 180 độ => góc C = 180° – 120° – 37° = 23 độ 

Bài 3: Cho tam giác ABC có BC = a, CA = b, AB = c và đường trung tuyến AM = c = AB. Chứng minh rằng: a2=2(b2+c2)

Lời giải:

Ta có định lý về trung tuyến như sau:

AM2=2(AB2+AC2)-BC24

c2=2(c2+b2)-a24

4c2=2c2+2b2–a2

a2=2(b2–c2) (dpcm)

Cũng có thể áp dụng định lý hàm số cos để tính tam giác trong thực tế. Có rất nhiều bài toán yêu cầu tính chiều cao của một cây cao nào đó hoặc một công trình mà chúng ta không thể trèo lên đỉnh để đo trực tiếp được. Ví dụ, nếu bạn muốn đo chiều cao của tháp Eiffel, bạn không thể trèo lên đỉnh của nó và kéo thước dây ra để đo trực tiếp. Sau đó, để đo chiều cao của nó, chúng ta sẽ áp dụng định nghĩa của lý thuyết cosin vào độ dài tương ứng của các tam giác để tính chiều cao cần thiết.

Xem thêm: Tác Giả Của Sherlock Holmes, Những Cuộc Phiêu Lưu Của Sherlock Holmes

Xây dựng công thức tính đường trung bình của tam giác theo ba cạnh dựa trên hai luận điểm cơ bản “Muốn tính một cạnh thì phải biết hai cạnh còn lại và góc ở giữa”, “Muốn tính một góc, bạn phải biết cạnh tương ứng”. Đây cũng là hai ý nghĩa quan trọng của định lý cosin và hệ quả của nó.

Thế nào là hàm số bậc nhất? Các dạng bài tập liên quan

Kiến thức ôn thi vào lớp 10 môn toán theo chuyên đề – phần 1

Phân thức đại số là gì? Bài tập vận dụng

Kết luận

THÔNG TIN LIÊN HỆ