Tuyển tập 77 đề thi tuyển sinh lớp 10 môn Toán của các trường chuyên, năng khiếu trên cả nước năm học 2013 - 2014.

Bạn đang xem: Đáp án đề thi môn toán vào lớp 10 năm 2013 tại hà nội

SỞ GIÁO DỤC VÀ ĐÀO TẠOTỈNH NINH BÌNH

ĐỀ CHÍNH THỨC

ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUYÊNNĂM HỌC 2013 - 2014

ĐỀ THI MÔN: TOÁN

Câu 1 (1,5 điểm).

1. Rút gọn biểu thức

*
.

2. Giải hệ phương trình

*
.

Câu 2 (2,0 điểm). Cho biểu thức:

*

1. Rút gọn A.

2. Tìm giá trị lớn nhất của A.

Câu 3 (2,0 điểm). Cho phương trình x2 - 2(m + 1)x + 2m = 0 (1) (với x là ẩn, m là tham số).


1. Giải phương trình (1) với m = 0.

2. Tìm m để phương trình (1) có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √2.

Câu 4 (3,0 điểm).

Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

1. Chứng minh tứ giác BCFM là tứ giác nội tiếp.

2. Chứng minh EM = EF.

3. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo không đổi khi M di chuyển trên cung BD.

Câu 5 (1,5 điểm).

1. Chứng minh rằng phương trình (n + 1)x2 + 2x - n(n + 2)(n + 3) = 0 (x là ẩn, n là tham số) luôn có nghiệm hữu tỉ với mọi số nguyên n.

2. Giải phương trình:

*


SỞ GIÁO DỤC VÀ ĐÀO TẠOQUẢNG NINH

ĐỀ THI CHÍNH THỨC

KỲ THI TUYỂN SINH LỚP 10TRƯỜNG THPT CHUYÊN HẠ LONGNĂM HỌC: 2013 - 2014

ĐỀ THI MÔN: TOÁN

Câu I. ( 2,0 điểm)

1) Cho biểu thức

*

a. Rút gọn biểu thức A.

b. Tìm giá trị của x để A nhận giá trị nguyên.

2) Tìm số nguyên dương n để

*
là số nguyên tố.

Câu II. (1,5 điểm)

Trên mặt phẳng tọa độ Oxy cho parabol (P) y = x2 và đường thẳng (d): y = mx + 2.

a) Chứng minh rằng với mọi giá trị của m thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm nằm về hai phía của trục tung.

b) Giả sử đường thẳng (d) cắt parabol (P) tại A(x1; y1) và B(x2; y2). Tìm giá trị của m để

*
.

Câu III. (2,0 điểm)

1) Giải phương trình:

*

2) Giải hệ phương trình:

*

Câu IV. (3,5 điểm)

Cho đường tròn (O; R), đường kính AB cố định, đường kính CD thay đổi (CD # AB). Các tia BC, BD cắt tiếp tuyến của đường tròn (O) tại A lần lượt ở E, F.


a) Chứng minh tứ giác CDFE nội tiếp.

b) Khi đường kính CD thay đổi, tìm giá trị nhỏ nhất của EF theo R.

c) Đường tròn đi qua ba điểm O, D, F và đường tròn đi qua ba điểm O, C, E cắt nhau ở G (G # O). Chứng minh ba điểm B, A, G thẳng hàng.

Xem thêm: Nghĩa Của Từ Aftershave Là Gì ? Aftershave Và Cách Sử Dụng Hiệu Quả Nhất

Câu V. (1,0 điểm)


Chia sẻ bởi:
*
Nguyen Minh Loc
fundacionfernandovillalon.com
Mời bạn đánh giá!
Lượt tải: 11.282 Lượt xem: 12.522 Dung lượng: 4,1 MB
Liên kết tải về

Link fundacionfernandovillalon.com chính thức:

77 đề thi vào lớp 10 môn Toán các trường chuyên năm học 2013 - 2014 fundacionfernandovillalon.com Xem
Sắp xếp theo Mặc địnhMới nhấtCũ nhất
*

Xóa Đăng nhập để Gửi
Tài liệu tham khảo khác
Chủ đề liên quan
Mới nhất trong tuần
Tài khoản Giới thiệu Điều khoản Bảo mật Liên hệ Facebook Twitter DMCA