Phương trình chứa căn – Bất phương trình chứa căn

Các dạng phương trình chứa căn bậc hai, bất phương trình chứa căn thức bậc hai luôn là một dạng toán xuất hiện nhiều trong các kì thi học kì, thi tuyển sinh vào lớp 10, thi THPTQG.

Bạn đang xem: Giải bất phương trình bậc 3

Để giải được phương trình, bất phương trình chứa căn, các em học sinh cần nắm vững kiến thức sau:

1. Nguyên tắc chung để giải phương trình, bất phương trình chứa căn bậc 2

Nguyên tắc chung để khử dấu căn thức là bình phương 2 vế của một phương trình, bất phương trình. Tuy nhiên, để đảm bảo việc bình phương này cho chúng ta một phương trình, bất phương trình mới tương đương thì cần phải có điều kiện cả 2 vế pt, bpt đều không âm.

Do đó, về bản chất, chúng ta lần lượt kiểm tra 2 trường hợp âm, và không âm của các biểu thức (thường là 1 vế của phương trình, bất phương trình đã cho).

2. Các dạng phương trình chứa căn, bất phương trình chứa căn cơ bản

Có khoảng 4 dạng phương trình chứa căn, bất phương trình chứa căn cơ bản đó là

*

3. Cách giải phương trình chứa căn, cách giải bất phương trình chứa căn

Chi tiết về phương pháp giải các dạng phương trình, bất phương trình chứa căn, xin mời thầy cô và các em học sinh theo dõi trong video sau đây.

4. Một số ví dụ về phương trình và bất phương trình chứa căn thức

Ví dụ 1. Giải phương trình

$$sqrt 4 + 2x – x^2 = x – 2$$

Hướng dẫn. Phương trình đã cho tương đương với

<eginarrayl,,,,,,,left{ eginarraylx – 2 ge 0\4 + 2x – x^2 = (x – 2)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x^2 – 3x = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x = 0, vee ,x = 3endarray ight. \ Leftrightarrow x = 3endarray> Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 2. Giải phương trình

Hướng dẫn. Phương trình đã cho tương đương với

<eginarrayl,,,,,,,left{ eginarraylx – 1 ge 0\25 – x^2 = (x – 1)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 1\2x^2 – 2x – 24 = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 1\x = 4, vee ,x = – 3endarray ight. \ Leftrightarrow x = 4endarray> Vậy phương trình có nghiệm duy nhất $x=4$.

Ví dụ 3. Giải phương trình

Hướng dẫn. Phương trình đã cho tương đương với

<eginarrayl,,,,,,,,sqrt 3x^2 – 9x + 1 = x – 2\, Leftrightarrow left{ eginarraylx – 2 ge 0\3x^2 – 9x + 1 = (x – 2)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 2\2x^2 – 5x – 3 = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x = 3 vee ,x = – frac12endarray ight. \ Leftrightarrow x = 3endarray> Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 4. Giải phương trình $$sqrt x^2 – 3x + 2 = x – 1$$

Hướng dẫn. Phương trình đã cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx – 1 ge 0\x^2 – 3x + 2 = left( x – 1 ight)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 1\x = 1endarray ight. \ Leftrightarrow x = 1endarray$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 1$.

Ví dụ 5. Giải phương trình $$sqrt x^2 – 5x + 4 = sqrt – 2x^2 – 3x + 12 $$

Hướng dẫn. Phương trình đã cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx^2 – 5x + 4 ge 0\x^2 – 5x + 4 = – 2x^2 – 3x + 12endarray ight.\Leftrightarrow left{ eginarraylleft( x – 1 ight)left( x – 4 ight) ge 0\3x^2 – 2x – 8 = 0endarray ight. & \Leftrightarrow left{ eginarraylleft< eginarraylx le 1\x ge 4endarray ight.\left< eginarraylx = 2\x = frac – 86endarray ight.endarray ight. Leftrightarrow x = frac – 86endarray$$ Vậy phương trình đã cho có nghiệm duy nhất $x = frac-86$.

Ví dụ 6. Giải bất phương trình $$x + 1 ge sqrt 2left( x^2 – 1 ight) $$

Hướng dẫn. Bất phương trình đã cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx + 1 ge 0\left( x + 1 ight)^2 ge 2left( x^2 – 1 ight) ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge – 1\x^2 – 2x – 3 le 0\x^2 – 1 ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge – 1\– 1 le x le 3\left< eginarraylx le – 1\x ge 1endarray ight.endarray ight. Leftrightarrow left< eginarraylx = – 1\1 le x le 3endarray ight.endarray$$

Vậy tập nghiệm của bất phương trình là $S = left< 1;3 ight> cup left – 1 ight$.

Ví dụ 7. Giải bất phương trình $$2x – 5 left{ eginarrayl2x – 5 – x^2 + 4x – 3 ge 0endarray ight. & left( 1 ight)\left{ eginarrayl2x – 5 ge 0\left( 2x – 5 ight)^2 endarray ight. & left( 2 ight)endarray ight.$$

Hệ bất phương trình (1) tương đương với $$left{ eginarraylx 1 le x le 3endarray ight. Leftrightarrow 1 le x Hệ bất phương trình (2) tương đương với $$eginarrayl,,,,,,,left{ eginarraylx ge frac52\5x^2 – 24x + 28 endarray ight.\Leftrightarrow left{ eginarraylx ge frac52\2 endarray ight. Leftrightarrow frac52 le x endarray$$

Lấy hợp tập nghiệm của 2 trường hợp trên, được đáp số cuối cùng là $S = left< 1;frac145 ight)$.

Ví dụ 8. Giải phương trình $$sqrt x + 4 – sqrt 1 – x = sqrt 1 – 2x $$

Hướng dẫn. Phương trình đã cho tương đương với

$$eginarrayl,,,,,,,sqrt x + 4 = sqrt 1 – 2x + sqrt 1 – x \Leftrightarrow left{ eginarrayl– 4 le x le frac12\x + 4 = 1 – x + 2sqrt (1 – x)(1 – 2x) + 1 – 2xendarray ight.\Leftrightarrow left{ eginarrayl– 4 le x le frac12\sqrt (1 – x)(1 – 2x) = 2x + 1endarray ight.\Leftrightarrow left{ eginarrayl– 4 le x le frac12\x ge – frac12\(1 – x)(1 – 2x) = 4x^2 + 4x + 1endarray ight.\Leftrightarrow left{ eginarrayl– frac12 le x le frac12\x = 0 vee x = – frac72endarray ight. Leftrightarrow x = 0endarray$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 0$.

Ví dụ 9. Giải phương trình $$sqrt 3x + 1 – sqrt 2x – 1 = sqrt 6 – x $$

Hướng dẫn. Điều kiện $left{ eginalign & 3x+1ge 0 \ & 2x-1ge 0 \ & 6-xge 0 \ endalign ight.Leftrightarrow left{ frac12le xle 6 ight.$

Với điều kiện đó, phương trình đã cho tương đương với $$eginarrayl,,,,,,,sqrt 3x + 1 – sqrt 2x – 1 = sqrt 6 – x \Leftrightarrow ,,,sqrt 3x + 1 = sqrt 6 – x + sqrt 2x – 1 \Leftrightarrow ,,,3x + 1 = 6 – x + 2x – 1 + 2sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,,2x – 4 = 2sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,x – 2 = sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,x^2 – 4x + 4 = – 2x^2 + 13x – 6,,,(x ge 2)\Leftrightarrow ,,3x^2 – 17x + 10 = 0\Leftrightarrow left< eginarraylx = 5\x = frac23left( l ight)endarray ight.endarray.$$ Vậy phương trình đã cho có nghiệm $x=5$.

Ví dụ 10.

Xem thêm: Dù Thân Thiết Tống Mỹ Linh Thời Trẻ, Tống Mỹ Linh

Giải bất phương trình $$2sqrtx-3-frac12sqrt9-2xge frac32$$

Hướng dẫn. Điều kiện $left{ eginalign & x-3ge 0 \ & 9-2xle 0 \ endalign ight.Leftrightarrow 3le xle frac92$

Với điều kiện trên, bất phương trình đã cho tương đương với <eginarrayl,,,,,,,2sqrt x – 3 ge frac12sqrt 9 – 2x + frac32\Leftrightarrow 4left( x – 3 ight) ge frac14left( 9 – 2x ight) + frac94 + frac32sqrt 9 – 2x \Leftrightarrow 16x – 48 ge 18 – 2x + 6sqrt 9 – 2x \Leftrightarrow 9x – 33 ge 3sqrt 9 – 2x \Leftrightarrow left{ eginarrayl18x – 64 ge 0\left( 9x – 33 ight)^2 ge 9left( 9 – 2x ight)endarray ight.\Leftrightarrow left{ eginarraylx ge frac329\81x^2 – 576x + 1008 ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge frac329\left< eginarraylx le frac289\x ge 4endarray ight.endarray ight. Leftrightarrow x ge 4endarray>

Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là $S=left< 4;,frac92 ight>$.

Xem các ví dụ khác nữa tại đây: Phương pháp biến đổi tương đương giải phương trình chứa căn