Cách giải phương trình đa thức bậc bốn tổng quát

Phương trình bậc bốn tổng quát: $ax^4+bx^3+cx^2+dx+e=0 ext (a e 0,a,b,c,d,ein mathbbR)$ta luôn đưa được phương trình về dạng $x^4+ax^3+bx^2+cx+d=0$ bằng cách chia hai vế phương trình cho $a.$

Vậy ta xét phương trình: $x^4+ax^3+bx^2+cx+d=0.$

Để giải phương trình này ta thực hiện nhóm hằng đẳng thức như sau:

(eginarrayl left( x^2 + fracax2 + m ight)^2 = left( fraca^24 - b ight)x^2 - cx - d + 2mleft( x^2 + fracax2 ight) + m^2\ Leftrightarrow left( x^2 + fracax2 + m ight)^2 = left( fraca^24 - b + 2m ight)x^2 + (ma - c)x + m^2 - d m (1). endarray)

Ta biến đổi vế phải của (1) thành một bình phương, tức chọn hằng số $m$ sao cho

Với hằng số $m$ được tìm ra từ phương trình $(2)$ ta đưa được $(1)$ về dạng:

$left( x^2+fracax2+m ight)^2=left( fraca^24-b+2m ight)left( x+fracma-c2left( fraca^24-b+2m ight) ight)^2.$

Phương trình này có thể đưa được về hai phương trình bậc hai dựa trên tính chất $A^2=B^2Leftrightarrow A=B;A=-B.$

VideoPhương pháp giải phương trình bậc bốn tổng quát

Tuy nhiên với dòng máy tính cầm tay CASIO FX 580 VNX hoặc VINACAL 570ES PLUS sắp ra mắt đã hỗ trợ giải một phương trình bậc bốn. Và hai dòng máy tính này được mang vào phòng thi theo quy chế của BGD vậy các em học sinh nên tận dụng chức năng này.

Bạn đang xem: Giải phương trình bậc 4

Một câu hỏi được đặt ra một cách rất tự nhiên: Liệu phương trình bậc 5 có giải tổng quát được bằng công thức hay không? Câu hỏi này đã thu hút sự quan tâm nghiên cứu của rất nhiều người. Có thể kể ra một số trường hợp sau: Tschirnhaus đưa ra lời giải nhưng bị Leibniz chỉ ra là sai lầm. Euler đưa ra lời giải sai nhưng đồng thời lại tìm được phương pháp mới để giải phương trình bậc 4. Lagrange cũng nghiên cứu vấn đề này và tìm ra cách thống nhất để giải quyết bài toán cho các phương trình bậc bé hơn hoặc bằng bốn. Tuy nhiên ông nói rằng phương pháp của ông sẽ sai nếu áp dụng cho phương trình bậc 5. Năm 1813, Ruffini công bố một chứng minh với nhiều sai sót rằng phương trình bậc 5 không giải được bằng căn thức.

Xem thêm: Máy Bơm Nước Tự Chế Máy Bơm Nước Mini Với Những Vật Liệu Đơn Giản

Cuối cùng, vào năm 1824 Niels Henrik Abel đã chứng minh một cách thuyết phục rằng phương trình bậc 5 tổng quát không giải được bằng căn thức<2>. Và Évariste Galois(1811 - 1832), chàng thanh niên người Pháp 21 tuổi là ngưới cuối cùng đưa ra lời giải rất sâu sắc cho bài toán tuyệt đẹp:"Làm thế nào để nhận biết một phương trình đại số là giải được hay không được bằng căn thức" bằng cách phát triển lý thuyết nhóm.

*

Gồm 4 khoá luyện thi duy nhất và đầy đủ nhất phù hợp với nhu cầu và năng lực của từng đối tượng thi sinh:

Quý thầy cô giáo, quý phụ huynh và các em học sinh có thể mua Combo gồm cả 4 khoá học cùng lúc hoặc nhấn vào từng khoá học để mua lẻ từng khoá phù hợp với năng lực và nhu cầu bản thân.

*

*

*

*

*

*