vectơ (vecu) được gọi là vectơ chỉ phương của đường thẳng (∆) nếu (vecu) ≠ (vec0) và giá của (vecu) song song hoặc trùng với (∆)

Nhận xét :
- Nếu (vecu) là một vectơ chỉ phương của đường thẳng (∆) thì (kvecu ( k≠ 0)) cũng là một vectơ chỉ phương của (∆) , do đó một đường thẳng có vô số vectơ chỉ phương.
Bạn đang xem: Phương trình pháp tuyến
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vectơ chỉ phương của đường thẳng đó.
2. Phương trình tham số của đường thẳng
- Phương trình tham số của đường thẳng (∆) đi qua điểm (M_0(x_0 ;y_0)) và nhận vectơ (vecu = (u_1; u_2)) làm vectơ chỉ phương là :
(∆) : (left{eginmatrix x= x_0+tu_1& \ y= y_0+tu_2& endmatrix ight.)
-Khi (u_1≠ 0) thì tỉ số (k= dfracu_2u_1) được gọi là hệ số góc của đường thẳng.
Từ đây, ta có phương trình đường thẳng (∆) đi qua điểm (M_0(x_0 ;y_0)) và có hệ số góc k là:
(y – y_0 = k(x – x_0))
Chú ý: Ta đã biết hệ số góc (k = an α) với góc (α) là góc của đường thẳng (∆) hợp với chiều dương của trục (Ox)
3. Vectơ pháp tuyến của đường thẳng
Định nghĩa: Vectơ (vecn) được gọi là vectơ pháp tuyến của đường thẳng (∆) nếu (vecn) ≠ (vec0) và (vecn) vuông góc với vectơ chỉ phương của (∆)
Nhận xét:
- Nếu (vecn) là một vectơ pháp tuyến của đường thẳng (∆) thì k(vecn) ((k ≠ 0)) cũng là một vectơ pháp tuyến của (∆), do đó một đường thẳng có vô số vec tơ pháp tuyến.
- Một đường thẳng được hoàn toàn xác định nếu biết một và một vectơ pháp tuyến của nó.
4. Phương trình tổng quát của đường thẳng
Định nghĩa: Phương trình (ax + by + c = 0) với (a) và (b) không đồng thời bằng (0), được gọi là phương trình tổng quát của đường thẳng.
Trường hợp đặc biết:
+ Nếu (a = 0 => y = dfrac-cb; ∆ // Ox) hoặc trùng Ox (khi c=0)
+ Nếu (b = 0 => x = dfrac-ca; ∆ // Oy) hoặc trùng Oy (khi c=0)
+ Nếu (c = 0 => ax + by = 0 => ∆) đi qua gốc tọa độ
+ Nếu (∆) cắt (Ox) tại (A(a; 0)) và (Oy) tại (B (0; b)) thì ta có phương trình đoạn chắn của đường thẳng (∆) :
(dfracxa + dfracyb = 1)
5. Vị trí tương đối của hai đường thẳng
Xét hai đường thẳng ∆1 và ∆2
có phương trình tổng quát lần lượt là :
a1x+b1y + c1 = 0 và a2x+b2y +c2 = 0
Điểm (M_0(x_0 ;y_0))) là điểm chung của ∆1 và ∆2 khi và chỉ khi ((x_0 ;y_0)) là nghiệm của hệ hai phương trình:
(1) (left{eginmatrix a_1x+b_1y +c_1 = 0& \ a_2x+b_2y+c_2= 0& endmatrix ight.)
Ta có các trường hợp sau:
a) Hệ (1) có một nghiệm: ∆1 cắt ∆2
b) Hệ (1) vô nghiệm: ∆1 // ∆2
c) Hệ (1) có vô số nghiệm: ∆1 ( equiv )∆2
6.Góc giữa hai đường thẳng
Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành 4 góc.
Nếu ∆1 không vuông góc với ∆2 thì góc nhọn trong số bốn góc đó được gọi là góc giữa hai đường thẳng ∆1 và ∆2.
Nếu ∆1 vuông góc với ∆2 thì ta nói góc giữa ∆1 và ∆2 bằng 900.
Trường hợp ∆1 và ∆2 song song hoặc trùng nhau thì ta quy ước góc giữa ∆1 và ∆2 bằng 00.
Xem thêm: Những Thông Tin Thú Vị Về Hoa Ly Có Độc Không ? Những Thông Tin Thú Vị Về Hoa Ly
Như vậy góc giữa hai đường thẳng luôn bé hơn hoặc bằng 900
Góc giữa hai đường thẳng ∆1 và ∆2 được kí hiệu là (widehat(Delta _1,Delta _2))
Cho hai đường thẳng:
∆1: a1x+b1y + c1 = 0
∆2: a2x+b2y + c2 = 0
Đặt (varphi) = (widehat(Delta _1,Delta _2))
(cos varphi) = (dfracsqrta_1^2+b_1^2sqrta_2^2+b_2^2)
Chú ý:
+ (Delta _1 ot Delta _2 Leftrightarrow n_1 ot n_2) ( Leftrightarrow a_1.a_2 + b_1.b_2 = 0)
+ Nếu (Delta _1) và (Delta _2) có phương trình y = k1 x + m1 và y = k2 x + m2 thì
(Delta _1 ot Delta _2 Leftrightarrow k_1.k_2 = - 1)
7. Công thức tính khoảng cách từ một điểm đến một đường thẳng
Trong mặt phẳng (Oxy) cho đường thẳng (∆) có phương trình (ax+by+c=0) và điểm (M_0(x_0 ;y_0))).
Khoảng cách từ điểm (M_0) đến đường thẳng (∆) kí hiệu là (d(M_0,∆)), được tính bởi công thức