Sin a cos b is an important trigonometric identity that is used to solve complicated problems in trigonometry. Sin a cos b is used to obtain the product of the sine function of angle a and cosine function of angle b. It can be obtained from angle sum and angle difference identities of the sine function. Sin a cos b formula is written as (1/2)
Bạn đang xem: Sin a cos b
In this article, we will explore the sin a cos b formula, its proof, and learn its application to solve various trigonometric problems with the help of solved examples.
1. | What is Sin a Cos b Identity? |
2. | Proof of Sin a Cos b Formula |
3. | Application of Sin a Cos b Identity |
4. | FAQs on Sin a Cos b |
What is Sin a Cos b Identity?
Sin a cos b is a trigonometric identity used to solve various problems in trigonometry. Sin a cos b is equal to half the sum of sine of the sum of angles a and b, and sine of difference of angles a and b. Mathematically, it is written as sin a cos b = (1/2)
Sin a Cos b Formula
The formula for sin a cos b is given by, sin a cos b = (1/2)

Proof of Sin a Cos b Formula
Now that we know the formula of sin a cos b, which is sin a cos b = (1/2)
Adding equations (1) and (2), we have
sin (a + b) + sin (a - b) = (sin a cos b + cos a sin b) + (sin a cos b - cos a sin b) (From (1) and (2))
⇒ sin (a + b) + sin (a - b) = sin a cos b + cos a sin b + sin a cos b - cos a sin b
⇒ sin (a + b) + sin (a - b) = (sin a cos b + sin a cos b) + (cos a sin b - cos a sin b)
⇒ sin (a + b) + sin (a - b) = 2 sin a cos b + 0
⇒ sin (a + b) + sin (a - b) = 2 sin a cos b
⇒ sin a cos b = (1/2)
Hence, we have obtained the sin a cos b formula using the sin (a + b) and sin (a - b) identities.
Application of Sin a Cos b Identity
Since we have derived the sin a cos b formula, now we will learn how to apply the formula to solve simple trigonometric and integration problems. We will consider some examples based on sin a cos b identity and solve them step-wise. Let us understand the application of the sin a cos b formula by following the given steps:
Example 1: Express the trigonometric function sin 7x cos 3x as a sum of the sine function.
Step 1: We will use the sin a cos b formula: sin a cos b = (1/2)
Step 2: Substitute the values of a and b in the formula sin a cos b = (1/2)
sin 7x cos 3x = (1/2)
⇒ sin 7x cos 3x = (1/2)
⇒ sin 7x cos 3x = (1/2) sin (10x) + (1/2) sin (4x)
Hence, we can write sin 7x cos 3x as (1/2) sin (10x) + (1/2) sin (4x) as a sum of sine function.
Example 2: Evaluate the integral ∫sin 2x cos 4x dx using the sin a cos b formula.
Step 1: First, we will express sin 2x cos 4x as a sum of sine function using the formula sin a cos b = sin a cos b = (1/2)
Step 2: Substitute the values of a and b in the formula sin a cos b = (1/2)
sin 2x cos 4x = (1/2)
⇒ sin 2x cos 4x = (1/2)
⇒ sin 2x cos 4x = (1/2) sin (6x) - (1/2) sin (2x)
Step 3: Substitute sin 2x cos 4x = (1/2) sin (6x) - (1/2) sin (2x) into the integral ∫sin 2x cos 4x dx.
∫sin 2x cos 4x dx = ∫ <(1/2) sin (6x) - (1/2) sin (2x)> dx
⇒ ∫sin 2x cos 4x dx = (1/2) ∫sin(6x) dx - (1/2) ∫sin(2x) dx
⇒ ∫sin 2x cos 4x dx = (1/2)<-cos(6x)>/6 - (1/2)<-cos(2x)>/2 + C
⇒ ∫sin 2x cos 4x dx = (-1/12) cos (6x) + (1/4) cos (2x) + C
Hence, we have solved the integral ∫sin 2x cos 4x dx using sin a cos b formula and is equal to (-1/12) cos (6x) + (1/4) cos (2x) + C.
Important Notes on Sin a Cos b
sin a cos b = (1/2)Related Topics on Sin a Cos b
Example 1: Evaluate the integral ∫sin 12x cos 3x dx using the sin a cos b formula.
Solution: First, we will express sin 12x cos 3x as a sum of sine function using the formula sin a cos b = sin a cos b = (1/2)
Substitute the values of a and b in the formula sin a cos b = (1/2)
sin 12x cos 3x = (1/2)
⇒ sin 12x cos 3x = (1/2)
⇒ sin 12x cos 3x = (1/2) sin (15x) + (1/2) sin (9x)
Substitute sin 12x cos 3x = (1/2) sin (15x) + (1/2) sin (9x) into the integral ∫sin 12x cos 3x dx.
∫sin 12x cos 3x dx = ∫ <(1/2) sin (15x) + (1/2) sin (9x)> dx
⇒ ∫sin 12x cos 3x dx = (1/2) ∫sin(15x) dx + (1/2) ∫sin(9x) dx
⇒ ∫sin 12x cos 3x dx = (1/2)<-cos(15x)>/15 + (1/2)<-cos(9x)>/9 + C
⇒ ∫sin 12x cos 3x dx = (-1/30) cos (15x) + (-1/18) cos (9x) + C
Hence, we have solved the integral ∫sin 12x cos 3x dx using sin a cos b formula and is equal to (-1/30) cos (15x) + (-1/18) cos (9x) + C.
Answer: ∫sin 12x cos 3x dx = (-1/30) cos (15x) + (-1/18) cos (9x) + C
Example 2: Express the trigonometric function sin 3x cos 9x as a sum of the sine function using sin a cos b formula.
Solution: We will use the sin a cos b formula: sin a cos b = (1/2)
Xem thêm: Máy Tính Dự Đoán Bóng Đá, Siêu Máy Tính Dự Đoán Kết Quả Bóng Đá
Substitute the values of a and b in the formula sin a cos b = (1/2)
sin 3x cos 9x = (1/2)
⇒ sin 3x cos 9x = (1/2)
⇒ sin 3x cos 9x = (1/2) sin (12x) - (1/2) sin (6x)
Hence, we can write sin 3x cos 9x as (1/2) sin (12x) - (1/2) sin (6x) as a sum of sine function using the sin a cos b formula.