công thức tính nhanh cực trị của Hàm số
Bài viết hôm nay, THPT Sóc Trăng sẽ chia sẻ cùng các bạn công thức tính nhanh cực trị của Hàm số bậc ba, bậc bốn cùng nhiều dạng bài tập vận dụng khác. Những quy tắc, công thức vô cùng dễ nhớ. Chia sẻ để có thêm những bí kíp hay trong việc khảo sát đồ thị hàm số các bạn nhé !
I. CỰC TRỊ CỦA HÀM SỐ LÀ GÌ?
1. Cực trị của hàm số là gì?
Bạn đang xem:
Cho hàm số y = f(x) liên tục trên khoảng (a; b) và điểm x0 ∈ (a; b).
Bạn đang xem: Số cực trị của hàm số
Nếu tồn tại số h > 0 sao cho f(x) Nếu tồn tại số h > 0 sao cho f(x) > f(x0), ∀x ∈ (x0 – h ; x0 + h), x ≠ x0 thì ta nói hàm số f đạt cực tiểu tại x0 .
Định lý 1: Cho hàm số y = f(x) liên tục trên khoảng K = (x0 – h ; x0 + h) (h > 0) và có đạo hàm trên K hoặc trên K ∖ x0 .
Nếu {f′(x)>0∣∀(x0−h;x0)f′(x)Nếu {f′(x)>0∣∀(x0−h;x0)f′(x)Định lý 2. Cho hàm số y = f(x) có đạo hàm cấp hai trên khoảng K = (x0 – h; x0 + h) (h > 0).
Nếu f"(x0) = 0, f”(x0) > 0 thì x0 là điểm cực tiểu của hàm số f.Nếu f"(x0) = 0, f”(x0)2. Cực trị của hàm số bậc ba là gì ?


III. BÀI TẬP VẬN DỤNG
Bài 1: Cho hàm số , với m là tham số thực. Xác định m để hàm số đã cho có hai cực trị.
Giải
Ta có:
Để hàm số có hai cực trị thì phương trình y’ = 0 phải có hai nghiệm phân biệt.
có hai nghiệm phân biệt.
Bài 2: Cho hàm số , m là tham số. Xác định các giá trị của m để hàm số không có cực trị.
Giải
Với m = 0 nên hàm số không có cực trị.
Với
Hàm số không có cực trị khi và chỉ khi phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép.
Vậy với thì hàm số không có cực trị.
Bài 3: Cho hàm số y = x4 – 2(m+1)x2 + m2 (1), với m là tham số thực. Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh của một tam giác vuông.
Giải
Đạo hàm y’ = 4x3 – 4(m + 1)x.
Hàm số có 3 cực trị m + 1 > 0 ⇔ m > -1
Khi đó đồ thị hàm số có 3 cực trị:
Nhận xét: A ∈ Oy, B và C đối xứng nhau qua Oy nên ∆ABC cân tại A tức là AB = AC nên tam giác chỉ có thể vuông cân tại A.
Bài 4: Cho hàm số . Tìm m dể hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân.
Giải
Trước tiên ta áp dụng phương pháp ở dạng 2 tìm m để hàm số có 3 cực trị.
Ta có:
Để hàm số có 3 cực trị thì phương trình y’ = 0 phải có 3 nghiệm phân biệt.
Phương trình (*) phải có 2 nghiệm phân biệt khác o
Vậy với thì hàm số có 3 cực trị.
Bây giờ ta sẽ tìm m để 3 cực trị này tạo thành 3 đỉnh của một tam giác vuông cân.
Ta có: với thì
Gọi 3 điểm cực trị lần lượt là:
Theo tính chất của hàm số bậc 4 trùng phương thì tam giác ABC cân tại A nên để ABC vuông cân thì AB vuông góc với AC
−−→AB.−−→AC=0AB→.AC→=0
m = 0 (loại) hoặc m =-1; m= 1 ( thỏa mãn)
Vậy với m = -1 và m = 1 thì thỏa mãn yêu cầu bài toán.
Bài 5: Tìm m để hàm số đạt cực tiểu tại x = -2.
Giải
Để hàm số đạt cực tiểu tại x = -2 thì điều kiện cần là :
Với thì 0″ /> nên hàm số đạt cực tiểu tại . Vậy thỏa yêu cầu
Với thì . Sử dụng bảng biến thiên ta thấy hàm số không có cực trị nên không thỏa yêu cầu.
Xem thêm: Đồ Chơi Lắp Ghép Mô Hình Hệ Mặt Trời Chính Hãng, Giá Tốt Tháng 4 2022
Vậy với m = 3 thì hàm số đạt cực tiểu tại x = -2.