Ví dụ: Xác định cận lấy tích phân sau trong tọa độ cực:
1. D giới hạn bởi :

Ta có: D giới hạn bởi đường tròn tâm O , bán kính 1 nên O nằm trong miền D, và mọi tia xuất phát từ O cắt biên tại 1 điểm có: r = 1 Do đó theo (3) ta có :

2 D giới hạn bởi




Do đường tròn đi qua O nên cận dưới r = 0, cận trên,: chuyển D qua tọa độ cực ta có

Vậy cận lấy tích phân của miền D là:

3. D giới hạn bởi

Hoàn toàn tương tự, bạn sẽ tìm được cận lấy tích phân của miền D là:


Bạn đang xem: Tích phân bội
Trong trường hợp này, việc tìm ra phương trình của 2 tia OA, OB sẽ rất vất vả, đôi khi lại không rơi vào các góc đặc biệt. Và việc tìm ra phương trình của cung lớn, cung nhỏ AB cũng không phải đơn giản.
Tuy nhiên, nếu tịnh tiến tâm đường tròn về góc tọa độ thì bài toán sẽ đơn giản hơn rất nhiều vì sẽ trở về ví dụ 1.
Với miền D có dạng này, trước tiên ta đổi biến. Đặt:

Khi đó:

5. Cho


Ở đây, tuy miền D là miền tam giác và ta dễ dàng xác định cận giới hạn của miền D là:


Khi đó: bạn dễ dàng nhận thấy miền D giới hạn bởi 2 tia


Vậy:

Cách 2: xác định cận bằng phương pháp đại số.
Chuyển các phương trình đường cong sang tọa độ cực. Chú ý điều kiện ban đầu

TH1: chỉ có duy nhất đường cong

Trường hợp này, ta tìm điều kiện của





Ví dụ 1: Xác định cận của tích phân trong tọa độ cực nếu D là miền giới hạn bởi

Ta có:

Do đó cận lấy tích phân được xác định bởi:

Ví dụ 2: Xác định cận của tích phân trong tọa độ cực nếu D là miền giới hạn bởi đường cong:

Rõ ràng, trong trường hợp này, việc vẽ miền D để xác định cận là việc làm tương đối khó khăn.
Nếu chuyển qua tọa độ cực, ta có:

Hay:

Do điểm (0;0) nằm trên đường cong, nên gốc O thuộc vào miền lấy tích phân D. Nên:

Như vậy, ta phải có điều kiện:

Nghĩa là:


Như vậy miền D gồm hai miền:


TH2: thu được 2 đường cong xác định bởi:

Với trường hợp này, ta phải tìm điều kiện của


Ví dụ: D là miền giới hạn nằm ngoài đường tròn tâm O, bán kính 1 và nằm trong đường tròn tâm I(1;0) bán kính 1.
Theo giả thiết ta có:

Chuyển qua tọa độ cực ta có:

Hay:

Như vậy, ta phải có điều kiện:

Từ đó, ta có:

Vậy:

Ngoài ra, còn một số trường hợp khác dành cho các bạn nghiên cứu thêm.
3. Đổi biến trong tích phân kép:
Cho hàm số f(x;y) liên tục trong miền D đóng và bị chặn.
Xét phép đổi biến:

Giả sử:
– D’ là tạo ảnh của D qua phép biến đổi (1)
– (1) xác định một song ánh từ D’ lên D. (Nghĩa là phép đổi biến biến miền D trong mp(Oxy) thành miền D’ trong mp(O’uv) sao cho mỗi điểm (u;v) thuộc D’ chỉ tương ứng duy nhất với 1 điểm (x;y) thuộc D).
Xem thêm: Ngắm Sài Gòn Thập Niên 90 Của Doi Kuro, Có Một Sài Gòn Những Năm Thập Niên 90 Thật Khác
– Các hàm số x(u;v) và y(u;v) liên tục và có đạo hàm riêng liên tục trên D’, thỏa mãn điều kiện:

(J được gọi là định thức Jacobi của các hàm số x và y)
Khi đó, ta có công thức đổi biến sau:

(Ta công nhận công thức đổi biến trên)






Với miền D cho như trên, nếu làm theo cách thông thường, dù lấy theo phương nào, ta phải chia miền D thành nhiều miền nhỏ. Do đó, việc tính toán sẽ phức tạp.
Dễ dàng nhận thấy miền D bị giới hạn bởi 2 cặp đường thẳng song song. Cặp thứ nhất có dạng:

