Tìm m để hàm số đồng biến, nghịch biến trên R là tài liệu vô cùng hữu ích mà fundacionfernandovillalon.com muốn giới thiệu đến quý thầy cô cùng các bạn lớp 12 tham khảo.

Bạn đang xem: Tìm m để hàm số nghịch biến

Các bài tập tìm m để hàm số đồng biến, nghịch biến trên R được biên soạn theo mức độ từ dễ đến khó theo chương trình toán lớp 12 giúp bạn đọc dễ dàng tiếp cận nhất. Thông qua tài liệu này các bạn nhanh chóng nắm vững kiến thức, giải nhanh được các bài tập Toán 12. Bên cạnh đó các bạn tham khảo thêm Bài tập trắc nghiệm sự đồng biến và nghịch biến của hàm số.


Tìm m để hàm số đồng biến, nghịch biến trên R


I. Phương pháp giải tìm m để hàm số đồng biến, nghịch biến trên
*

- Định lí: Cho hàm số

*
có đạo hàm trên khoảng
*

+ Hàm số

*
đồng biến trên khoảng
*
khi và chỉ khi
*
với mọi giá trị x thuộc khoảng
*
. Dấu bằng xảy ra tại hữu hạn điểm.

+ Hàm số

*
nghịch biến trên khoảng
*
khi và chỉ khi
*
với mọi giá trị x thuộc khoảng
*
. Dấu bằng xảy ra tại hữu hạn điểm.

- Để giải bài toán này trước tiên chúng ta cần biết rằng điều kiện để hàm số y=f(x) đồng biến trên R thì điều kiện trước tiên hàm số phải xác định trên

*
.

+ Giả sử hàm số y=f(x) xác định và liên tục và có đạo hàm trên

*
. Khi đó hàm số y=f(x) đơn điệu trên
*
khi và chỉ khi thỏa mãn hai điều kiện sau:

Hàm số y=f(x) xác định trên
*
.Hàm số y=f(x) có đạo hàm không đổi dấu trên
*
.

+ Đối với hàm số đa thức bậc nhất:

Hàm số y = ax + b
*
đồng biến trên
*
khi và chỉ khi a > 0.Hàm số y = ax + b
*
nghịch biến trên
*
khi và chỉ khi a

- Đây là dạng bài toán thường gặp đối với hàm số đa thức bậc 3. Nên ta sẽ áp dụng như sau:

Xét hàm số

*

TH1:

*
(nếu có tham số)

TH2:

*

+ Hàm số đồng biến trên

*

+ Hàm số nghịch biến trên

*

Bước 1. Tìm tập xác định

*
.

Bước 2. Tính đạo hàm y’ = f’(x).

Bước 3. Biện luận giá trị m theo bảng quy tắc.

Bước 4. Kết luận giá trị m thỏa mãn.

II. Ví dụ minh họa tìm m để hàm số đồng biến, nghịch biến trên R

Ví dụ 1: Cho hàm số

*
. Tìm tất cả giá trị của m để hàm số nghịch biến trên
*

*
*
*
*

Hướng dẫn giải

Ta có:

*

Hàm số nghịch biến trên

*
. Tìm m để hàm số nghịch biến trên
*
.

*
*
*
*

Hướng dẫn giải

Ta có:

*

TH1:

*

TH2:

*
. Hàm số nghịch biến trên
*
khi:

*
đồng biến trên
*
.

*
*
*

Hướng dẫn giải

*

Để hàm số đồng biến trên

*
thì:

*

Đáp án A

Ví dụ 4: Cho hàm số

*
. Tìm tất cả giá trị của m sao cho hàm số luôn nghịch biến.

Hướng dẫn giải

Tập xác định:

*

Tính đạo hàm:

*

TH1: Với m = 1 ta có

*

Vậy m = 1 không thỏa mãn điều kiện đề bài.

TH2: Với

*
ta có:

Hàm số luôn nghịch biến

*

Ví dụ 5: Tìm m để hàm số

*
nghịch biến trên
*

Hướng dẫn giải

Tập xác định:

*



Đạo hàm:

*

TH1: Với m = -3

*
(thỏa mãn)

Vậy m = -3 hàm số nghịch biến trên

*

TH2: Với

*

Hàm số nghịch biến trên

*
khi
*

*
?

*
*
*
*

Câu 2: Cho hàm số

*
. Hỏi hàm số đồng biến trên khi nào?

*
*

Câu 3: Cho các hàm số sau:

*

*

*

*

Hàm số nào nghịch biến trên

*
?

*
*
*
*

Câu 4: Tìm tất cả các giá trị của tham số m sao cho hàm số

*
luôn nghịch biến trên
*

*
*
*
luôn đồng biến trên
*

*
*
*
. Tìm giá trị nhỏ nhất của m để hàm số luôn đồng biến trên
*

*
*
*
*

Câu 7: Cho hàm số y = f(x) = x3 - 6x2 + 9x - 1. Phương trình f(x) = -13 có bao nhiêu nghiệm?

A. 0B. 3
C. 2D. 1

Câu 8: Xác định giá trị của m để hàm số y =

*
x3 - mx2 + (m + 2)x - (3m - 1) đồng biến trên
*

A. M 2
C. -1 ≤ m ≤ 2D.-1


Câu 9: Tìm tất cả các giá trị thực của m sao cho hàm số y =

*
x3 - mx2 +(2m - 3) - m + 2 luôn nghịch biến trên
*

A. -3 ≤ m ≤ 1B. M ≤ 2
C. M ≤ -3; m ≥ 1D. -3

Câu 10: Tìm m để hàm số đồng biến trên khoảng y = x3 - 3mx2 đồng biến trên

*

A. M ≥ 0B. M ≤ 0
C. M

Câu 11: Cho hàm số: y =

*
x3 + (m +1)x2 - (m + 1) + 2. Tìm các giá trị của tham số m sao cho hàm số đồng biến trên tập xác định của nó.

Xem thêm: Mai Gốc Nhớt Là Gì Khác ? Đây Là Lý Do Cây Gốc Nhớt Là Gì

A. M > 4B. -2 ≤ m ≤ -1
C. M

Câu 12: Cho hàm số: y =

*
x3 + 2x2 - mx + 2. Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên tập xác định của nó.

A. M ≥ 4B. M ≤ 4
C. M > 4D. M

Câu 13: Tìm tham số m để hàm số

*
đồng biến trên tập xác định của chúng:

A. M ≥ -1B. M ≤ -1
C. M ≤ 1D. M ≥ 2

Câu 14: Tìm tất cả các giá trị của tham số m để hàm số: