Đặt \(I= \lim \dfrac{{6n - 1}}{{3n + 2}} \) \(= \lim \dfrac{{n\left( {6 - \dfrac{1}{n}} \right)}}{{n\left( {3 + \dfrac{2}{n}} \right)}}\)\( = \lim \dfrac{{6 - \dfrac{1}{n}}}{{3 + \dfrac{2}{n}}} \)
Vì khi \(n \to \infty \) thì \({{\lim \left( {\dfrac{1}{n}} \right)}}=0\) nên \({{\lim \left( {6 - \dfrac{1}{n}} \right)}}=6\) và \({{\lim \left( {3 + \dfrac{2}{n}} \right)}} = 3\)
Do đó \( I= \dfrac{\lim \left({6 - \dfrac{1}{n}}\right) }{\lim \left({3 + \dfrac{2}{n}}\right)} \) \(= \dfrac{{6 }}{{3}} = 2\)
Bạn đang xem: Toán 11 bài 3 trang 121
LG b
\(\lim \dfrac{3n^{2}+n-5}{2n^{2}+1}\)
Lời giải chi tiết:
Đặt \(I = \lim \dfrac{{3{n^2} + n - 5}}{{2{n^2} + 1}} \) \(= \lim \dfrac{{{n^2}\left( {3 + \dfrac{1}{n} - \dfrac{5}{{{n^2}}}} \right)}}{{{n^2}\left( {2 + \dfrac{1}{{{n^2}}}} \right)}} \) \(= \lim \dfrac{{3 + \dfrac{1}{n} - \dfrac{5}{{{n^2}}}}}{{2 + \dfrac{1}{{{n^2}}}}} \)
Vì khi \(n \to \infty \) thì \({{\lim \left( {\dfrac{1}{n}} \right)}}=0\) nên \(= \lim \left( {3 + \dfrac{1}{n} - \dfrac{5}{{n^2}}} \right) = 3\) và \(\lim \left( {2 + \frac{1}{{{n^2}}}} \right) = 2{\rm{ }}\)
Do đó \(I = \dfrac{3}{2} \)
LG c
\(\lim \dfrac{3^{n}+5.4^{n}}{4^{n}+2^{n}}\);
Phương pháp giải:
Chia cả tử và mẫu cho \(4^n\) và sử dụng giới hạn \(\lim {q^n} = 0\left( {\left| q \right|
Lời giải chi tiết:
Chia cả tử và mẫu của phân thức cho \(4^n\) ta được:
\(\lim \dfrac{3^{n}+5.4^{n}}{4^{n}+2^{n}}\) \(= \lim \dfrac{{\left( {{3 \over 4}} \right)^n}+5}{1+{\left( {{1 \over 2}} \right)^n}}\) \(=\dfrac{0+5}{1+0}=\dfrac{5}{1}\) \(= 5\).
LG d
\(\lim\dfrac{\sqrt{9n^{2}-n+1}}{4n -2}\)
Lời giải chi tiết:
\(\lim \dfrac{\sqrt{9n^{2}-n+1}}{4n -2}\) = \(\lim \dfrac{\sqrt{{n^2}\left( {9 - {1 \over n} + {1 \over {{n^2}}}} \right)}}{n(4-\dfrac{2}{n})}\)= \(\lim \dfrac{\sqrt{9-\dfrac{1}{n}+\dfrac{1}{n^{2}}}}{4-\dfrac{2}{n}}\) =\(\dfrac{\sqrt{9}}{4}\)= \(\dfrac{3}{4}\).
fundacionfernandovillalon.com


Chia sẻ
Bình chọn:
4.1 trên 94 phiếu
Bài tiếp theo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay
Báo lỗi - Góp ý
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
TẢI APP ĐỂ XEM OFFLINE


Bài giải đang được quan tâm
× Báo lỗi góp ý
Vấn đề em gặp phải là gì ?
Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp fundacionfernandovillalon.com
Gửi góp ý Hủy bỏ
× Báo lỗi
Cảm ơn bạn đã sử dụng fundacionfernandovillalon.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Gửi Hủy bỏ
Liên hệ | Chính sách

Xem thêm: Các Bạn Ơi Phân Tích Số Ra Thừa Số Nguyên Tố Thì Làm Thế Nào Với Máy Tính Fx

Đăng ký để nhận lời giải hay và tài liệu miễn phí
Cho phép fundacionfernandovillalon.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.