Công thức lượng giác là một trong những công thức được ứng dụng khá rộng rãi trong toán học đặc biệt là trong các chương trình của Trung Học Phổ Thông lớp 10, 11 và lớp 12. Hầu hết các công thứ lượng giác đều có mặt trong các đề thi toán học như cuối năm, thi tốt nghiệp và cả trong đề thi đại học .

Bạn đang xem: Tổng hợp công thức lượng giác lớp 10

Để mà học thuộc các công thức lượng giác thường tất cả chúng ta sẽ gặp rất nhiều khó khăn vất vả. Chính cho nên vì thế để mà học thuộc được hàng loạt công thức của hàm lượng giác thì tất cả chúng ta cần mất nhiều thời hạn và công sức của con người. Chính cho nên vì thế để giúp các bạn học viên trung học phổ thông hoàn toàn có thể ôn lại được các hàm lượng giác thì Legoland xin được tổng hợp các công thức lượng giác từ lớp 10, lớp 11 đến lớp 12 nhé .


NỘI DUNG CHÍNH


Tổng hợp bảng các công thức lượng giác lớp 10, 11, 12Hướng dẫn mẹo học thuộc bảng công thức lượng giác nhanh là nhớ lâu

Lượng giác là gì?

Lượng giác trong tiếng anh được dịch là Trigonometry (từ tiếng Hy Lạp trigōnon nghĩa là “tam giác” + metron “đo lường” ). Lượng giác chính là một nhánh trong toán học dùng để tìm hiểu về hình tam giác và sự liên hệ giữa cạnh của hình tam giác và góc độ của nó. Lượng giác chỉ ra hàm số lượng giác và nó diễn tả các mối liên kết và có thể áp dụng được để học những hiện tượng có chu kỳ, như sóng âm.

Các ứng dụng của lượng giác 

Trong toán học thì lượng giác được ứng dụng khá thoáng rộng và nó được sử dụng để :

Giúp chúng ta dễ dàng đo chiều cao và khoảng cách của vật bất kỳHỗ trợ đo lường trong kiến trúc và kỹ thuậtLý thuyết lượng giác trong âm nhạc và sản xuấtHỗ trợ hệ thống định vị GPS để xác định vị trí

Tổng hợp bảng các công thức lượng giác lớp 10, 11, 12

Trong công thức lượng giác này thì chúng tôi sẽ tổng hợp lại các kiến thức và kỹ năng về lượng giác của các chương trình học trung học phổ thông từ lớp 10, lớp 11 đến lớp 12 giúp các bạn hoàn toàn có thể mạng lưới hệ thống lại được các công thức để giúp dễ học và dễ hiệu hơn nhé .

Bảng giá trị lượng giác của cung và góc đặc biệt 

*

Bảng tính như sau :

*

Các cung liên quan đặc biệt 

Đây là công thức lượng giác không thiếu về các cung tương quan đặc biệt quan trọng với nhau theo đúng sách giáo khoa .

*

Các công thức lượng giác cơ bản 

*



Công thức cộng 

*

Công thức nhân đôi và nhân 3

Bảng công thức nhân đôi và nhân 3 trong công thức lượng giác không thiếu trong hàm lượng giác được Legoland liệt kê ra như sau :

*

Công thức hạ bậc

Với công thức lượng giác hạ bậc này tất cả chúng ta hoàn toàn có thể vận dụng để giải các bài toán về các góc lượng giác khác nhau .

*

Công thức biến đổi tổng thành tích 

*

Công thức biến đổi tích thành tổng

*

Công thức nghiệm của phương trình lượng giác cơ bản

*

Một số công thức lượng giác khác được dùng nhiều trong tam giác 

*

Hướng dẫn mẹo học thuộc bảng công thức lượng giác nhanh là nhớ lâu

Để giúp mọi người hoàn toàn có thể ghi nhớ công thức lượng giác lâu hơn và thuận tiện hơn thì Legoland xin tổng hợp lại cho mọi người những mẹo học theo các câu vì hay các từ đồng âm để hoàn toàn có thể nhớ lâu nhất nhé .

Mẹo học thuộc bảng lượng giác cộng trừ

Cos + cos = 2 cos cos cos trừ cos = trừ 2 sin sin Sin + sin = 2 sin cos sin trừ sin = 2 cos sin. Sin thì sin cos cos sin Cos thì cos cos sin sin “coi chừng” (dấu trừ). Tang tổng thì lấy tổng tang Chia một trừ với tích tang, dễ òm.

Mẹo học bảng giá trị lượng giác của cung đặc biệt

Cos đối, sin bù, phụ chéo, khác pi tan Cosin của 2 góc đối bằng nhau ; sin của 2 góc bù nhau thì bằng nhau ; phụ chéo là 2 góc phụ nhau thì sin góc này = cos góc kia, tan góc này = cot góc kia ; tan của 2 góc hơn kém pi thì bằng nhau .

Mẹo học thuộc công thức gấp 2 

+Sin gấp đôi = 2 sin cos +Cos gấp đôi = bình cos trừ bình sin = trừ 1 + 2 lần bình cos = + 1 trừ 2 lần bình sin +Tang gấp đôi Tang đôi ta lấy đôi tang (2 tang) Chia 1 trừ lại bình tang, ra liền.

Mẹo học hệ thức lượng trong tam giác vuông

Sao Đi Học (Sin = Đối / Huyền) Cứ Khóc Hoài ( Cos = Kề / Huyền) Thôi Đừng Khóc ( Tan = Đối / Kề) Có Kẹo Đây ( Cotan = Kề/ Đối)

Sin : đi học (cạnh đối – cạnh huyền) Cos: không hư (cạnh đối – cạnh huyền) Tang: đoàn kết (cạnh đối – cạnh kề) Cotang: kết đoàn (cạnh kề – cạnh đối)

Tìm sin lấy đối chia huyền Cosin lấy cạnh kề, huyền chia nhau Còn tang ta hãy tính sau Đối trên, kề dưới chia nhau ra liền Cotang cũng dễ ăn tiền Kề trên, đối dưới chia liền là ra

Sin bù, cos đối, hơn kém pi tang, phụ chéo. +Sin bù :Sin(180-a)=sina +Cos đối :Cos(-a)=cosa +Hơn kém pi tang : Tg(a+180)=tga Cotg(a+180)=cotga +Phụ chéo là 2 góc phụ nhau thì sin góc này = cos góc kia, tg góc này = cotg góc kia.

Công thức tổng quát hơn về việc hơn kém pi như sau: Hơn kém bội 2 pi sin, cos Tang, cotang hơn kém bội pi. Sin(a+k.2.180)=sina ; Cos(a+k.2.180)=cosa Tg(a+k180)=tga ; Cotg(a+k180)=cotga *sin bình + cos bình = 1 *Sin bình = tg bình trên tg bình + 1. *cos bình = 1 trên 1 + tg bình. *Một trên cos bình = 1 + tg bình. *Một trên sin bình = 1 + cotg bình.

Câu vè hàm lượng giác 

Bắt được quả tang Sin nằm trên cos Côtang cãi lại Cos nằm trên sin!

Mẹo học công thức lượng giác nhân 3

Nhân ba một góc bất kỳ, sin thì ba bốn, cos thì bốn ba, dấu trừ đặt giữa 2 ta, lập phương chỗ bốn, … thế là ok.

Xem thêm: 100+ Hình Ảnh Đại Bàng 3D Tung Cánh Cực Ngầu, Đầy Uy Dũng, 100+ Hình Nền Đại Bàng 3D


Mẹo nhớ công thức: tan(a+b)=(tan+tanb)/1-tana.tanb

tan một tổng 2 tầng cao rộng trên thượng tầng tan + tan tan dưới hạ tầng số 1 ngang tàng dám trừ một tích tan tan oai hùng

Tổng kết :

Với các công thức lượng giác ở trên hy vọng mọi người hoàn toàn có thể vận dụng để giải các phương trình lượng giác, các góc và các bài tập tương quan đến công thức lượng giác tốt nhất và nhanh nhất nhé .